Copied to
clipboard

G = C42.302C23order 128 = 27

163rd non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.302C23, C4.1182- 1+4, C84Q839C2, (C4×Q8).31C4, C4⋊C8.237C22, (C4×C8).339C22, C42.228(C2×C4), (C2×C8).440C23, (C2×C4).680C24, C4.16(C2×M4(2)), (C2×C4).27M4(2), (C22×Q8).33C4, C8⋊C4.99C22, (C4×Q8).282C22, C22⋊C8.236C22, C2.33(Q8○M4(2)), C42.6C4.32C2, C23.231(C22×C4), C22.203(C23×C4), (C2×C42).787C22, C22.30(C2×M4(2)), C2.21(C22×M4(2)), C42.12C4.45C2, (C22×C4).1284C23, C2.23(C23.32C23), (C2×C4⋊C4).80C4, (C2×C4×Q8).46C2, C4⋊C4.231(C2×C4), (C2×Q8).211(C2×C4), (C2×C4).278(C22×C4), (C22×C4).359(C2×C4), SmallGroup(128,1715)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C42.302C23
C1C2C4C2×C4C22×C4C2×C42C2×C4×Q8 — C42.302C23
C1C22 — C42.302C23
C1C2×C4 — C42.302C23
C1C2C2C2×C4 — C42.302C23

Generators and relations for C42.302C23
 G = < a,b,c,d,e | a4=b4=1, c2=b, d2=e2=a2, ab=ba, cac-1=a-1b2, dad-1=a-1, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a2c, ece-1=b2c, ede-1=a2d >

Subgroups: 228 in 178 conjugacy classes, 134 normal (16 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, C2×Q8, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4×Q8, C22×Q8, C42.12C4, C42.6C4, C84Q8, C2×C4×Q8, C42.302C23
Quotients: C1, C2, C4, C22, C2×C4, C23, M4(2), C22×C4, C24, C2×M4(2), C23×C4, 2- 1+4, C23.32C23, C22×M4(2), Q8○M4(2), C42.302C23

Smallest permutation representation of C42.302C23
On 64 points
Generators in S64
(1 31 55 17)(2 22 56 28)(3 25 49 19)(4 24 50 30)(5 27 51 21)(6 18 52 32)(7 29 53 23)(8 20 54 26)(9 40 64 42)(10 47 57 37)(11 34 58 44)(12 41 59 39)(13 36 60 46)(14 43 61 33)(15 38 62 48)(16 45 63 35)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 63 55 16)(2 9 56 64)(3 57 49 10)(4 11 50 58)(5 59 51 12)(6 13 52 60)(7 61 53 14)(8 15 54 62)(17 35 31 45)(18 46 32 36)(19 37 25 47)(20 48 26 38)(21 39 27 41)(22 42 28 40)(23 33 29 43)(24 44 30 34)
(1 31 55 17)(2 28 56 22)(3 25 49 19)(4 30 50 24)(5 27 51 21)(6 32 52 18)(7 29 53 23)(8 26 54 20)(9 42 64 40)(10 47 57 37)(11 44 58 34)(12 41 59 39)(13 46 60 36)(14 43 61 33)(15 48 62 38)(16 45 63 35)

G:=sub<Sym(64)| (1,31,55,17)(2,22,56,28)(3,25,49,19)(4,24,50,30)(5,27,51,21)(6,18,52,32)(7,29,53,23)(8,20,54,26)(9,40,64,42)(10,47,57,37)(11,34,58,44)(12,41,59,39)(13,36,60,46)(14,43,61,33)(15,38,62,48)(16,45,63,35), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,55,16)(2,9,56,64)(3,57,49,10)(4,11,50,58)(5,59,51,12)(6,13,52,60)(7,61,53,14)(8,15,54,62)(17,35,31,45)(18,46,32,36)(19,37,25,47)(20,48,26,38)(21,39,27,41)(22,42,28,40)(23,33,29,43)(24,44,30,34), (1,31,55,17)(2,28,56,22)(3,25,49,19)(4,30,50,24)(5,27,51,21)(6,32,52,18)(7,29,53,23)(8,26,54,20)(9,42,64,40)(10,47,57,37)(11,44,58,34)(12,41,59,39)(13,46,60,36)(14,43,61,33)(15,48,62,38)(16,45,63,35)>;

G:=Group( (1,31,55,17)(2,22,56,28)(3,25,49,19)(4,24,50,30)(5,27,51,21)(6,18,52,32)(7,29,53,23)(8,20,54,26)(9,40,64,42)(10,47,57,37)(11,34,58,44)(12,41,59,39)(13,36,60,46)(14,43,61,33)(15,38,62,48)(16,45,63,35), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,55,16)(2,9,56,64)(3,57,49,10)(4,11,50,58)(5,59,51,12)(6,13,52,60)(7,61,53,14)(8,15,54,62)(17,35,31,45)(18,46,32,36)(19,37,25,47)(20,48,26,38)(21,39,27,41)(22,42,28,40)(23,33,29,43)(24,44,30,34), (1,31,55,17)(2,28,56,22)(3,25,49,19)(4,30,50,24)(5,27,51,21)(6,32,52,18)(7,29,53,23)(8,26,54,20)(9,42,64,40)(10,47,57,37)(11,44,58,34)(12,41,59,39)(13,46,60,36)(14,43,61,33)(15,48,62,38)(16,45,63,35) );

G=PermutationGroup([[(1,31,55,17),(2,22,56,28),(3,25,49,19),(4,24,50,30),(5,27,51,21),(6,18,52,32),(7,29,53,23),(8,20,54,26),(9,40,64,42),(10,47,57,37),(11,34,58,44),(12,41,59,39),(13,36,60,46),(14,43,61,33),(15,38,62,48),(16,45,63,35)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,63,55,16),(2,9,56,64),(3,57,49,10),(4,11,50,58),(5,59,51,12),(6,13,52,60),(7,61,53,14),(8,15,54,62),(17,35,31,45),(18,46,32,36),(19,37,25,47),(20,48,26,38),(21,39,27,41),(22,42,28,40),(23,33,29,43),(24,44,30,34)], [(1,31,55,17),(2,28,56,22),(3,25,49,19),(4,30,50,24),(5,27,51,21),(6,32,52,18),(7,29,53,23),(8,26,54,20),(9,42,64,40),(10,47,57,37),(11,44,58,34),(12,41,59,39),(13,46,60,36),(14,43,61,33),(15,48,62,38),(16,45,63,35)]])

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4N4O···4V8A···8P
order12222244444···44···48···8
size11112211112···24···44···4

44 irreducible representations

dim11111111244
type+++++-
imageC1C2C2C2C2C4C4C4M4(2)2- 1+4Q8○M4(2)
kernelC42.302C23C42.12C4C42.6C4C84Q8C2×C4×Q8C2×C4⋊C4C4×Q8C22×Q8C2×C4C4C2
# reps12481682822

Matrix representation of C42.302C23 in GL6(𝔽17)

010000
100000
0011500
0011600
00314161
0030151
,
1300000
0130000
0016000
0001600
0000160
0000016
,
390000
8140000
0014020
000001
0012030
0001600
,
100000
010000
004000
0041300
00120130
0012094
,
0160000
1600000
0011500
0011600
00014116
00140216

G:=sub<GL(6,GF(17))| [0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,1,3,3,0,0,15,16,14,0,0,0,0,0,16,15,0,0,0,0,1,1],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[3,8,0,0,0,0,9,14,0,0,0,0,0,0,14,0,12,0,0,0,0,0,0,16,0,0,2,0,3,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,4,12,12,0,0,0,13,0,0,0,0,0,0,13,9,0,0,0,0,0,4],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,1,1,0,14,0,0,15,16,14,0,0,0,0,0,1,2,0,0,0,0,16,16] >;

C42.302C23 in GAP, Magma, Sage, TeX

C_4^2._{302}C_2^3
% in TeX

G:=Group("C4^2.302C2^3");
// GroupNames label

G:=SmallGroup(128,1715);
// by ID

G=gap.SmallGroup(128,1715);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,120,1430,219,100,675,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=b,d^2=e^2=a^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^2*c,e*c*e^-1=b^2*c,e*d*e^-1=a^2*d>;
// generators/relations

׿
×
𝔽