p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.302C23, C4.1182- 1+4, C8⋊4Q8⋊39C2, (C4×Q8).31C4, C4⋊C8.237C22, (C4×C8).339C22, C42.228(C2×C4), (C2×C8).440C23, (C2×C4).680C24, C4.16(C2×M4(2)), (C2×C4).27M4(2), (C22×Q8).33C4, C8⋊C4.99C22, (C4×Q8).282C22, C22⋊C8.236C22, C2.33(Q8○M4(2)), C42.6C4.32C2, C23.231(C22×C4), C22.203(C23×C4), (C2×C42).787C22, C22.30(C2×M4(2)), C2.21(C22×M4(2)), C42.12C4.45C2, (C22×C4).1284C23, C2.23(C23.32C23), (C2×C4⋊C4).80C4, (C2×C4×Q8).46C2, C4⋊C4.231(C2×C4), (C2×Q8).211(C2×C4), (C2×C4).278(C22×C4), (C22×C4).359(C2×C4), SmallGroup(128,1715)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.302C23
G = < a,b,c,d,e | a4=b4=1, c2=b, d2=e2=a2, ab=ba, cac-1=a-1b2, dad-1=a-1, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a2c, ece-1=b2c, ede-1=a2d >
Subgroups: 228 in 178 conjugacy classes, 134 normal (16 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, C2×Q8, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4×Q8, C22×Q8, C42.12C4, C42.6C4, C8⋊4Q8, C2×C4×Q8, C42.302C23
Quotients: C1, C2, C4, C22, C2×C4, C23, M4(2), C22×C4, C24, C2×M4(2), C23×C4, 2- 1+4, C23.32C23, C22×M4(2), Q8○M4(2), C42.302C23
(1 31 55 17)(2 22 56 28)(3 25 49 19)(4 24 50 30)(5 27 51 21)(6 18 52 32)(7 29 53 23)(8 20 54 26)(9 40 64 42)(10 47 57 37)(11 34 58 44)(12 41 59 39)(13 36 60 46)(14 43 61 33)(15 38 62 48)(16 45 63 35)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 63 55 16)(2 9 56 64)(3 57 49 10)(4 11 50 58)(5 59 51 12)(6 13 52 60)(7 61 53 14)(8 15 54 62)(17 35 31 45)(18 46 32 36)(19 37 25 47)(20 48 26 38)(21 39 27 41)(22 42 28 40)(23 33 29 43)(24 44 30 34)
(1 31 55 17)(2 28 56 22)(3 25 49 19)(4 30 50 24)(5 27 51 21)(6 32 52 18)(7 29 53 23)(8 26 54 20)(9 42 64 40)(10 47 57 37)(11 44 58 34)(12 41 59 39)(13 46 60 36)(14 43 61 33)(15 48 62 38)(16 45 63 35)
G:=sub<Sym(64)| (1,31,55,17)(2,22,56,28)(3,25,49,19)(4,24,50,30)(5,27,51,21)(6,18,52,32)(7,29,53,23)(8,20,54,26)(9,40,64,42)(10,47,57,37)(11,34,58,44)(12,41,59,39)(13,36,60,46)(14,43,61,33)(15,38,62,48)(16,45,63,35), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,55,16)(2,9,56,64)(3,57,49,10)(4,11,50,58)(5,59,51,12)(6,13,52,60)(7,61,53,14)(8,15,54,62)(17,35,31,45)(18,46,32,36)(19,37,25,47)(20,48,26,38)(21,39,27,41)(22,42,28,40)(23,33,29,43)(24,44,30,34), (1,31,55,17)(2,28,56,22)(3,25,49,19)(4,30,50,24)(5,27,51,21)(6,32,52,18)(7,29,53,23)(8,26,54,20)(9,42,64,40)(10,47,57,37)(11,44,58,34)(12,41,59,39)(13,46,60,36)(14,43,61,33)(15,48,62,38)(16,45,63,35)>;
G:=Group( (1,31,55,17)(2,22,56,28)(3,25,49,19)(4,24,50,30)(5,27,51,21)(6,18,52,32)(7,29,53,23)(8,20,54,26)(9,40,64,42)(10,47,57,37)(11,34,58,44)(12,41,59,39)(13,36,60,46)(14,43,61,33)(15,38,62,48)(16,45,63,35), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,55,16)(2,9,56,64)(3,57,49,10)(4,11,50,58)(5,59,51,12)(6,13,52,60)(7,61,53,14)(8,15,54,62)(17,35,31,45)(18,46,32,36)(19,37,25,47)(20,48,26,38)(21,39,27,41)(22,42,28,40)(23,33,29,43)(24,44,30,34), (1,31,55,17)(2,28,56,22)(3,25,49,19)(4,30,50,24)(5,27,51,21)(6,32,52,18)(7,29,53,23)(8,26,54,20)(9,42,64,40)(10,47,57,37)(11,44,58,34)(12,41,59,39)(13,46,60,36)(14,43,61,33)(15,48,62,38)(16,45,63,35) );
G=PermutationGroup([[(1,31,55,17),(2,22,56,28),(3,25,49,19),(4,24,50,30),(5,27,51,21),(6,18,52,32),(7,29,53,23),(8,20,54,26),(9,40,64,42),(10,47,57,37),(11,34,58,44),(12,41,59,39),(13,36,60,46),(14,43,61,33),(15,38,62,48),(16,45,63,35)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,63,55,16),(2,9,56,64),(3,57,49,10),(4,11,50,58),(5,59,51,12),(6,13,52,60),(7,61,53,14),(8,15,54,62),(17,35,31,45),(18,46,32,36),(19,37,25,47),(20,48,26,38),(21,39,27,41),(22,42,28,40),(23,33,29,43),(24,44,30,34)], [(1,31,55,17),(2,28,56,22),(3,25,49,19),(4,30,50,24),(5,27,51,21),(6,32,52,18),(7,29,53,23),(8,26,54,20),(9,42,64,40),(10,47,57,37),(11,44,58,34),(12,41,59,39),(13,46,60,36),(14,43,61,33),(15,48,62,38),(16,45,63,35)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | ··· | 4V | 8A | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | - | |||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | M4(2) | 2- 1+4 | Q8○M4(2) |
kernel | C42.302C23 | C42.12C4 | C42.6C4 | C8⋊4Q8 | C2×C4×Q8 | C2×C4⋊C4 | C4×Q8 | C22×Q8 | C2×C4 | C4 | C2 |
# reps | 1 | 2 | 4 | 8 | 1 | 6 | 8 | 2 | 8 | 2 | 2 |
Matrix representation of C42.302C23 ►in GL6(𝔽17)
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 15 | 0 | 0 |
0 | 0 | 1 | 16 | 0 | 0 |
0 | 0 | 3 | 14 | 16 | 1 |
0 | 0 | 3 | 0 | 15 | 1 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
3 | 9 | 0 | 0 | 0 | 0 |
8 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 12 | 0 | 3 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 13 | 0 | 0 |
0 | 0 | 12 | 0 | 13 | 0 |
0 | 0 | 12 | 0 | 9 | 4 |
0 | 16 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 15 | 0 | 0 |
0 | 0 | 1 | 16 | 0 | 0 |
0 | 0 | 0 | 14 | 1 | 16 |
0 | 0 | 14 | 0 | 2 | 16 |
G:=sub<GL(6,GF(17))| [0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,1,3,3,0,0,15,16,14,0,0,0,0,0,16,15,0,0,0,0,1,1],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[3,8,0,0,0,0,9,14,0,0,0,0,0,0,14,0,12,0,0,0,0,0,0,16,0,0,2,0,3,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,4,12,12,0,0,0,13,0,0,0,0,0,0,13,9,0,0,0,0,0,4],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,1,1,0,14,0,0,15,16,14,0,0,0,0,0,1,2,0,0,0,0,16,16] >;
C42.302C23 in GAP, Magma, Sage, TeX
C_4^2._{302}C_2^3
% in TeX
G:=Group("C4^2.302C2^3");
// GroupNames label
G:=SmallGroup(128,1715);
// by ID
G=gap.SmallGroup(128,1715);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,120,1430,219,100,675,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=1,c^2=b,d^2=e^2=a^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^2*c,e*c*e^-1=b^2*c,e*d*e^-1=a^2*d>;
// generators/relations